Exercises for the course MSE-423 Fall 2024
Solutions of homework # 5

Exercise 1: The quantum harmonic oscillator

Using the variational principle, the energy of the quantum harmonic oscillator described by the
wave function v, (x) reads:
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where Et),] is the energy functional, and Ej is the true ground-state energy. Let us compute E[t),]
using the expression for the trial wave function 1, ().
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1. The denominator of eq. (1) can be evaluated as follows:
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Using the normalization condition we have:
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Now let us calculate the numerator of eq. (1):
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Putting all together we find:
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The energy expectation value E[¢,] has the minimum when dE[¢,]/da = 0, that is

dE[Ys] B mw? mw
da 2m  8a? Gmin 2h (7)
Only ampin with the “4+” sign has a physical meaning. The energy at the minimum is thus
hw
Ernin = E[¢amin] = 7 =Ep. (8)

Therefore, we have found that Efi),, . | is exactly equal to the ground-state energy Ey, which
means that the wave function
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is the true exact ground-state wave function of the quantum harmonic oscillator.

2. Using Eq. (9), we can evaluate the probability density of a quantum harmonic oscillator as:

p(@) = [apn (@) = | Te” T, (10)

If we plot the classical and quantum probability density we obtain something like in Fig. 1.
As you see they are very different and the two most important features are:

Classical
probability

N Classical limit

Figure 1: Comparison between the classical and quantum probability distribu-
tions for an harmonic oscillator in the ground state (source http://hyperphysics.phy-
astr.gsu.edu/hbase/quantum /hosc6.html)

e The classical probability distribution is bounded in space, simply because the kinetic
mv? : kx? :

energy K = - and potential energy V = *- cannot be negative and the total energy

E = K + V must be conserved. In the quantum case the probability distribution is

a Gaussian function with a tail that goes to zero at infinity, so there is non-vanishing

probability of finding the particle beyond the “classical region”.
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e For the quantum oscillator the particle will spend most of its time near that center
point, while in the classical case very little time is spent there where the particle has
the maximum speed; it will spend most of its time near the end points of its oscillation
where its speed is smaller.
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Exercise 2: Uncertainty principle and the hydrogen atom

1. According to the text the total energy as a function of a is:
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Figure 2: Schematic plot of E(a) as a function of a.

From the plot in fig. 2, we can see that an infinite energy barrier is present at a = 0; indeed,
the limit of E(a) for a — 0 is +00. Although there is Coulomb attraction between the electron
and proton, the repulsive term is of order 1/a? and is so strong that electron needs an infinite
amount of energy to fall on nucleus.

2. In the opposite case, for a — oo, when electron and proton are very far apart, their interaction
energy is zero: a free electron and a free proton. However, the electron wants to minimize its
energy, by going to its ground state, the lowest possible energy state. We can estimate the
ground state energy Fy and the ground state distance ag by looking for the minimum of E(a)
by varying a. By taking a derivative we have:
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This is the famous Bohr radius. Now we have learned that the atomic dimensions are of order
of angstroms and we have a basis to understand the size of atoms!

We can now evaluate the energy in correspondence of ag to obtain the minimum energy,
namely the ground state:
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This is the energy of the ground state of the hydrogen atom in the international system of
units. In atomic physics one would rather work with the electronvolt as a unit of energy. Since
leV = 1.602...- 10719 J, one quickly obtains:

Ey = —13.605eV

Note that (minus) the ground state energy of the hydrogen atom is exactly the definition of
the Rydberg. Therefore:
EO =—-1 Ry

3. If the electron is in the ground state, an energy equal to the depth of the well is needed to
free the electron. Hence Fignization = +13.6eV. From the relation £ = hvr, we obtain the
frequency of the photon carrying that energy as v = E/h = 3.29 - 10 Hz. One can also
obtain its wavelength as A = % = ¢ ~ 100nm. This region of the electromagnetic spectrum
lies in the ultraviolet and it marks the onset of what is called ionizing radiation, from the far

ultraviolet up to ~-rays.
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Suppose we have a hydrogen atom, and measure the position of the electron;
we must not be able to predict exactly where the electron will be, or the momentum
spread will then turn out to be infinite. Every time we look at the electron, it is
somewhere, but it has an amplitude to be in different places so there is a prob-
ability of it being found in different places. These places cannot all be at the
nucleus; we shall suppose there is a spread in position of order a. That is, the dis-
tance of the electron from the nucleus is usually about a. We shall determine a by
minimizing the total energy of the atom.

The spread in momentum is roughly k/a because of the uncertainty relation, so
that if we try to measure the momentum of the electron in some manner, such
as by scattering x-rays off it and looking for the Doppler effect from a moving
scatterer, we would expect not to get zero every time—the electron is not standing
still—but the momenta must be of the order p = h/a. Then the kinetic energy
is roughly 3mv® = p?/2m = h?®/2ma®. (In a sense, this is a kind of dimensional
analysis to find out in what way the kinetic energy depends upon Planck’s constant,
upon m, and upon the size of the atom. We need not trust our answer to within
factors like 2, 7, etc. We have not even defined a very precisely.) Now the potential
energy is minus e? over the distance from the center, say —e?/a, where, we remem-
ber, e? is the charge of an electron squared, divided by 4we;. Now the point is
that the potential energy is reduced if & gets smaller, but the smaller a is, the higher
the momentum required, because of the uncertainty principle, and therefore the
higher the kinetic energy. The total energy is

E = h'/2ma® — e*/a. (38.10)
We do not know what g is, but we know that the atom is going to arrange itself
to make some kind of compromise so that the energy is as little as possible. In

order to minimize E, we differentiate with respect to a, set the derivative equal to
zero, and solve for a. The derivative of E is

dE/da = —h®/ma® + e%/a®, (38.11)

and setting dE/da = 0 gives for a the value

0.528 angstrom
= 0.528 X 107" meter. (38.12)

ag = h%/me®

This particular distance is called the Bohr radius, and we have thus learned that
atomic dimensions are of the order of angstroms, which is right; This is pretty
good—in fact, it is amazing, since until now we have had no basis for understanding
the size of atoms! Atoms are completely impossible from the classical point of
view, since the electrons would spiral into the nucleus.

Now if we put the value (3 8..12) for ag into (38.10) to find the energy, it comes
out
Ey = —e%/2ay = —me*/2h? = —13.6ev. (38.13)

What does a negative energy mean? It means that the electron has less energy
when it is in the atom than when it is free, It means it is bound. It means it takes
energy to kick the electron out; it takes energy of the order of 13.6 ev to ionize a
hydrogen atom. We have no reason to think that it is not two or three times this—
or half of this—or (1 /) times this, because we have used such a sloppy argument.
However, we have cheated, we have used all the constants in such a way that it
happens to come out the right number! This number, 13.6 electron volts, is called
a Rydberg of energy; it is the ionization energy of hydrogen.

So we now understand why we do not fall through the floor. As we walk, our
shoes with their masses of atoms push against the floor with its mass of atoms.
In order to squash the atoms closer together, the electrons would be confined to a
smaller space and, by the uncertainty principle, their momenta would have to be
higher on the average, and that means high energy; the resistance to atomic com-
pression is a quantum-mechanical effect and not a classical effect.

Figure 3: Feynman lectures original discussion.



Exercises for the course MSE-423 Fall 2024
Exercise 3: Ionization energies and relativistic effects for hydrogen-like atoms

1. The system is composed by a single electron interacting with a nucleus of charge Z, hence we
can use the results for the hydrogen atom and update the atomic number:

Eps = —13.6eV - Z°. (11)

Hence, we obtain Ej, equal to (in eV) 13.6 for H, 54.4 eV for He, 122.5 for Li, 871 for O, 9200
for Fe and 11446 for Cu; all very close to the experimental values.

2. At variance with the first question, an electron in a neutral atom not only interacts with the
nucleus but also with all the others electrons of the atom through the Coulomb force. All
electrons repel each other, so the potential energy due to the electron-electron interaction is
overall positive. Hence, the total energy is higher, and the ionization energy smaller.

3. The first ionization energy is the smallest, because it is the least amount of energy required
to ionize a neutral atom; typically involving the removal of one of the outermost electrons
(feeling a “screened” nuclear charge).

4. We use the formula v/c = aZ and obtain 0.0073 for H, 0.19 for Fe, 0.58 for Au and 0.61 for
Bi. So for most elements of the periodic table, the orbital speed v of a 1s electron is a sizeable
fraction of the speed of light.

5. We just invert the formula given in the text, Z = 0.2/« = 27.4. Hence, it is sufficient to take
Ni (Z = 28) to reach 20% of the speed of light for the 1s electron.
6. We need to evaluate the value of the relativistic correction £ 240‘2 for H, Fe, and Au. By using
the corresponding value of Z for each element, we obtain 1.3 x 1075 for H, 9.0 x 1072 for Fe
and 8.4 x 1072 for Au. In all these cases we obtain that Z24"‘2 < 1. Hence, the correction to
the 1s electron energy is very small for H and Fe, and even for Au which is much heavier than
other two elements. Stronger relativistic effects show up for other atomic orbitals (especially
in heavy elements), and they are related to the so-called spin-orbit coupling effect, which we

will not discuss in this exercise.




