
Exercises for the course MSE-423 Fall 2024

Solutions of homework # 5

Exercise 1: The quantum harmonic oscillator

Using the variational principle, the energy of the quantum harmonic oscillator described by the
wave function ψα(x) reads:

E[ψα] =
⟨ψα|H |ψα⟩
⟨ψα|ψα⟩

≥ E0 , (1)

where E[ψα] is the energy functional, and E0 is the true ground-state energy. Let us compute E[ψα]
using the expression for the trial wave function ψα(x).

1. The denominator of eq. (1) can be evaluated as follows:

⟨ψα|ψα⟩ =
+∞∫

−∞

ψ∗
α(x)ψα(x) dx = |A|2

+∞∫
−∞

e−2αx2
dx = |A|2

√
π

2α
. (2)

Using the normalization condition we have:

⟨ψα|ψα⟩ = |A|2
√

π

2α
= 1, (3)

A =
4

√
2α

π
. (4)

Now let us calculate the numerator of eq. (1):

⟨ψα|H |ψα⟩ =
∞∫

−∞

ψ∗
α(x)

(
− ℏ2

2m

d2

dx2
+
mω2

2
x2

)
ψα(x) dx

= |A|2
∞∫

−∞

e−αx2

(
− ℏ2

2m

d2

dx2
+
mω2

2
x2

)
e−αx2

dx

= |A|2
∞∫

−∞

e−αx2

(
ℏ2

2m
2α(1− 2αx2) +

mω2

2
x2

)
e−αx2

dx

= |A|2 ℏ2

2m
2α

∞∫
−∞

e−2αx2
dx+ |A|2

(
mω2

2
− 2ℏ2α2

m

) ∞∫
−∞

x2 e−2αx2
dx

= |A|2 ℏ
2α

m

√
π

2α
+ |A|2

(
mω2

8α
− ℏ2α

2m

)√
π

2α
. (5)

Putting all together we find:

E[ψα] =
ℏ2α
2m

+
mω2

8α
. (6)
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The energy expectation value E[ψα] has the minimum when dE[ψα]/dα = 0, that is

dE[ψα]

dα
=

ℏ2

2m
− mω2

8α2
= 0 =⇒ αmin = ±mω

2ℏ
. (7)

Only αmin with the “+” sign has a physical meaning. The energy at the minimum is thus

Emin = E[ψαmin ] =
ℏω
2

= E0 . (8)

Therefore, we have found that E[ψαmin ] is exactly equal to the ground-state energy E0, which
means that the wave function

ψαmin(x) =
4

√
mω

ℏπ
e−

mω
2ℏ x2

(9)

is the true exact ground-state wave function of the quantum harmonic oscillator.

2. Using Eq. (9), we can evaluate the probability density of a quantum harmonic oscillator as:

ρ(x) = |ψαmin(x)|2 =
√
mω

ℏπ
e−

mω
ℏ x2

. (10)

If we plot the classical and quantum probability density we obtain something like in Fig. 1.
As you see they are very different and the two most important features are:

Figure 1: Comparison between the classical and quantum probability distribu-
tions for an harmonic oscillator in the ground state (source http://hyperphysics.phy-
astr.gsu.edu/hbase/quantum/hosc6.html)

• The classical probability distribution is bounded in space, simply because the kinetic
energy K = mv2

2 and potential energy V = kx2

2 cannot be negative and the total energy
E = K + V must be conserved. In the quantum case the probability distribution is
a Gaussian function with a tail that goes to zero at infinity, so there is non-vanishing
probability of finding the particle beyond the “classical region”.
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• For the quantum oscillator the particle will spend most of its time near that center
point, while in the classical case very little time is spent there where the particle has
the maximum speed; it will spend most of its time near the end points of its oscillation
where its speed is smaller.
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Exercise 2: Uncertainty principle and the hydrogen atom

1. According to the text the total energy as a function of a is:

E(a) =
ℏ2

2ma2
− 1

4πε0

e2

a
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Figure 2: Schematic plot of E(a) as a function of a.

From the plot in fig. 2, we can see that an infinite energy barrier is present at a = 0; indeed,
the limit of E(a) for a→ 0 is +∞. Although there is Coulomb attraction between the electron
and proton, the repulsive term is of order 1/a2 and is so strong that electron needs an infinite
amount of energy to fall on nucleus.

2. In the opposite case, for a→ ∞, when electron and proton are very far apart, their interaction
energy is zero: a free electron and a free proton. However, the electron wants to minimize its
energy, by going to its ground state, the lowest possible energy state. We can estimate the
ground state energy E0 and the ground state distance a0 by looking for the minimum of E(a)
by varying a. By taking a derivative we have:

0 =
dE(a)

da

∣∣∣∣
a=a0

= −2
ℏ2

2ma3
+

1

4πε0

e2

a2

∣∣∣∣
a=a0

hence:

a0 =
4πε0
e2

ℏ2

m
=
ε0
e2

h2

πm
=

8.854 · 10−12C2/Nm2

(1.602 · 10−19C)2

(
6.63 · 1 0−34 J · s

)2
π · 9.109 · 10−31 kg

= 0.529 Å

This is the famous Bohr radius. Now we have learned that the atomic dimensions are of order
of angstroms and we have a basis to understand the size of atoms!
We can now evaluate the energy in correspondence of a0 to obtain the minimum energy,
namely the ground state:

E0 ≡ E(a0) =
ℏ2

2ma20
− 1

4πε0

e2

a0
=

ℏ2

2m

(
me2

4πε0ℏ2

)2

− e2

4πε0

(
me2

4 πε0ℏ2

)
= − me4

2ℏ2(4πε0)2

= − h2

8π2ma20
= −

(
6.63 · 10−34 J · s

)2
8π2 · 9.109 · 10−31 kg · (0.529 · 10−10m)2

= −2.17987 · 10−18 J.
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This is the energy of the ground state of the hydrogen atom in the international system of
units. In atomic physics one would rather work with the electronvolt as a unit of energy. Since
1 eV = 1.602... · 10−19 J, one quickly obtains:

E0 = −13.605 eV

Note that (minus) the ground state energy of the hydrogen atom is exactly the definition of
the Rydberg. Therefore:

E0 = −1Ry

3. If the electron is in the ground state, an energy equal to the depth of the well is needed to
free the electron. Hence Eionization = +13.6 eV. From the relation E = hν, we obtain the
frequency of the photon carrying that energy as ν = E/h = 3.29 · 1015Hz. One can also
obtain its wavelength as λ = hc

E = c
ν ∼ 100 nm. This region of the electromagnetic spectrum

lies in the ultraviolet and it marks the onset of what is called ionizing radiation, from the far
ultraviolet up to γ-rays.
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Figure 3: Feynman lectures original discussion.
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Exercise 3: Ionization energies and relativistic effects for hydrogen-like atoms

1. The system is composed by a single electron interacting with a nucleus of charge Z, hence we
can use the results for the hydrogen atom and update the atomic number:

E1s = −13.6eV · Z2. (11)

Hence, we obtain E1s equal to (in eV) 13.6 for H, 54.4 eV for He, 122.5 for Li, 871 for O, 9200
for Fe and 11446 for Cu; all very close to the experimental values.

2. At variance with the first question, an electron in a neutral atom not only interacts with the
nucleus but also with all the others electrons of the atom through the Coulomb force. All
electrons repel each other, so the potential energy due to the electron-electron interaction is
overall positive. Hence, the total energy is higher, and the ionization energy smaller.

3. The first ionization energy is the smallest, because it is the least amount of energy required
to ionize a neutral atom; typically involving the removal of one of the outermost electrons
(feeling a “screened” nuclear charge).

4. We use the formula v/c = αZ and obtain 0.0073 for H, 0.19 for Fe, 0.58 for Au and 0.61 for
Bi. So for most elements of the periodic table, the orbital speed v of a 1s electron is a sizeable
fraction of the speed of light.

5. We just invert the formula given in the text, Z = 0.2/α = 27.4. Hence, it is sufficient to take
Ni (Z = 28) to reach 20% of the speed of light for the 1s electron.

6. We need to evaluate the value of the relativistic correction Z2α2

4 for H, Fe, and Au. By using
the corresponding value of Z for each element, we obtain 1.3× 10−5 for H, 9.0× 10−3 for Fe
and 8.4 × 10−2 for Au. In all these cases we obtain that Z2α2

4 ≪ 1. Hence, the correction to
the 1s electron energy is very small for H and Fe, and even for Au which is much heavier than
other two elements. Stronger relativistic effects show up for other atomic orbitals (especially
in heavy elements), and they are related to the so-called spin-orbit coupling effect, which we
will not discuss in this exercise.
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